INTRODUCTION
1
2 OCCMS Ltd: Company Information
3 ORBIT KEY FUNCTIONALITY
4
5 3.1 Orbit project information
6 3.2 Orbit tag information and checklist population
7 3.3 Checksheet library
8 3.4 Checksheet management
9 3.5 Checksheet scanning module
10 3.6 Punchlist, technical, and site queries
11 3.7 Orbit certification
12 3.8 Orbit dynamic commissioning procedure preparation and reporting
13 3.9 Orbit document register
14 3.10 Orbit imports and population
15 3.11 Orbit MoC
16 3.12 Reporting
17 3.13 Orbit dashboard
18 3.14 Preservation
19 3.15 Engineering data
20 3.16 Hazardous area equipment
21 3.17 Security
22 3.18 Interfacing and data import/export
23 3.19 Job Cards
24 3.20 Risk
25
26 ORBIT DEPLOYMENT
15 4.1 Orbit versions
26 4.2 Training
27 4.3 "Train the trainer"
28
29 SUPPORT
6 1 Introduction to Support
30 2 OCCMS Ltd: Company Information
31 3 ORBIT KEY FUNCTIONALITY
32
33 7 PROVISION OF TRAINED PERSONNEL
34 2 Introduction to Provision of Trained Personnel
35 8 OCCMS Offices and Contact Details
36 25 UK Support Office
37 26 Aberdeen Support Office
38 26 Inverness Orion HQ
39 26 Houston, USA
40 26 Perth, Australia
41 26 Singapore
42
43 Meet some of our team
44 27 Website & Social Networking links
45
46 TRAINING
51 1 Training
52 2 "Train the trainer"
53
54 ORBIT TRAINING
55 18
56
57 ORBIT DEPLOYMENT
58 15
59
60 OCCMS Ltd: Company Information
61 INTRODUCTION
62 ORBIT KEY FUNCTIONALITY
63
64 PROVISION OF TRAINED PERSONNEL
65 1 Introduction to Support
66 2 OCCMS Ltd: Company Information
67 3 ORBIT KEY FUNCTIONALITY
68
69 OCCMS Offices and Contact Details
70 25 UK Support Office
71 26 Aberdeen Support Office
72 26 Inverness Orion HQ
73 26 Houston, USA
74 26 Perth, Australia
75 26 Singapore
76
77 Meet some of our team
78 27 Website & Social Networking links
79
80 ORBIT TRAINING
81 18
82 2 "Train the trainer"
83
84 ORBIT DEPLOYMENT
85 15
86 2 "Train the trainer"
INTRODUCTION

In today's modern project execution environment, cost, time, and resources face the most stringent of demands. There is also an increasing need for visibility, transparency, accuracy, and, above all else, accountability. The cost, time, and effort required to successfully implement a project management system such as Orbit will be far outweighed by the benefits gained in terms of overall management and project control.

Project management effectiveness and the need to 'perform to plan' has led to the requirement to make the most of modern technology and to develop tools and systems which support delivery and guarantee product integrity to the eventual asset owner and/or operator. Orbit is such a tool.

Orbit is capable of working in any environment to support the business function of project completion. It will provide an accurate overview to management in regard to a timely and cost-effective delivery of the project.

Orbit can meet the client's specifications and support their strategy, and where necessary the contract, throughout construction, pre-commissioning, static and dynamic commissioning, start-up, performance testing, and finally handover, acceptance, and project close-out.

Orbit provides traceability and an auditable compliance and integrity path upon demand and at any time throughout all of the project phases, from start to finish.

Orbit is a structured control tool with three primary functions: an electronic warehouse for the storage of data; a system for monitoring task accomplishment; and a means of reporting the completion status of all items, equipment, system, plant, and, ultimately, a project. Orbit will clearly define completion and commissioning requirements and retain a focus on priorities and targets through all phases of a project, irrespective of size and complexity. Upon demand, Orbit is capable of delivering auditable records and the precise traceability of every static check and dynamic test.

Project management effectiveness and the need to 'perform to plan' has led to the requirement to make the most of modern technology and to develop tools and systems which support delivery and guarantee product integrity to the eventual asset owner and/or operator. Orbit is such a tool.

Orbit is capable of working in any environment to support the business function of project completion. It will provide an accurate overview to management in regard to a timely and cost-effective delivery of the project.

Orbit can meet the client's specifications and support their strategy, and where necessary the contract, throughout construction, pre-commissioning, static and dynamic commissioning, start-up, performance testing, and finally handover, acceptance, and project close-out.

Orbit provides traceability and an auditable compliance and integrity path upon demand and at any time throughout all of the project phases, from start to finish.

Orbit is a structured control tool with three primary functions: an electronic warehouse for the storage of data; a system for monitoring task accomplishment; and a means of reporting the completion status of all items, equipment, system, plant, and, ultimately, a project. Orbit will clearly define completion and commissioning requirements and retain a focus on priorities and targets through all phases of a project, irrespective of size and complexity. Upon demand, Orbit is capable of delivering auditable records and the precise traceability of every static check and dynamic test.
OCCMS Ltd was formed in 2007 to provide industry leading commissioning and completion services and products, drawing on over 30 years of experience of major projects developed worldwide.

In addition to our Orbit software product, we have created and produced a commissioning system which is capable of working in any environment. This system supports the business function of project completion and commissioning and provides precise control and an overview to management in regard to the timely and cost-effective delivery of a project. The system is made-up of modules pre-populated with templates or control tools specific to applications commonly used in completions and commissioning documentation, such as procedures, processes, spreadsheets, and flowcharts. Our experienced staff can customise our systems to the client’s requirement or provide clients without formal commissioning systems with a full service package ready for deployment into their project.

OCCMS also maintain a database of commissioning personnel available worldwide to assist clients with personnel requirements bespoke to every project.

We currently have operational offices in Aberdeen, Scotland, and Newcastle-upon-Tyne, England; project support offices are located in Perth, Australia, Singapore and Houston, USA.

Our Aberdeen office operates as our IT development and support centre for our work on the Orbit CMS. We maintain a dedicated development team who are responsible for customising Orbit to our clients’ requirements while working on innovative products, including iOS versions of Orbit.

Our products and services have been successfully deployed on several large projects. Current clients include:

- Anadarko
- Fluor
- Tailman
- Imperial Oil
- Urenco
- Syncrude / Addax Petroleum

In 2008, we became the first company in the project management industry to be awarded ISO9001:2008 accreditation, a management standard recognised in 170 countries, by the British Standards Institution, for completions and commissioning services.
ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Assurance and verification

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.

ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.

ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.

ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.

ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.

ASSURANCE AND VERIFICATION

3 ORBIT PROJECT INFORMATION

Project information is captured and held within a dedicated module within Orbit for fast and simple reference. The project information within Orbit is organised into a multi-tier system, comprising:

Projects - as the top level item.
Locations - multiple project locations can be imported and represented within Orbit.
Areas and buildings - all areas, both hazardous and non-hazardous, are listed and made available for reference. In addition, Orbit is aware of tag items which reside within hazardous areas and will highlight any missing information required for these tag items.

Systems and sub-systems - systems and sub-systems are stored and represented as tiered items within Orbit. Each tag within Orbit is assigned a system and a sub-system.

Types and sub-types - all tags within Orbit can be assigned a type and a subsidiary sub-type, allowing the client to quickly search and report on the status of particular types of equipment.

Project drawings - Orbit provides a managed documentation library for project drawings and documentation. Systems, sub-systems, and tags can explicitly reference any drawing within the repository, allowing users to review drawings in which the item is located.

3.1 ORBIT TAG INFORMATION AND CHECKSHEET POPULATION

Orbit stores complete and concise information for each tag item within the database, including:

• Tag reference
• Tag description
• Location and area
• Tag discipline
• PO Number
• Manufacturer details, including serial number and model number
• Preservation information, including a look up to the standard preservation cycle for an equipment type

The tag database can be searched by location, area, unit, system and sub-system, tag type and tag number.

All checksheets have a unique identifier that relates it to a specific tag within the Orbit system.
ASSURANCE AND VERIFICATION

3.3 CHECKSHEET LIBRARY
Orbit can be provided with a full suite of A & B checksheets covering most standard equipment types. These checksheets will be provided in Word format, associated with tag-item types and sub-types and uploaded into the Orbit document library for review and acceptance prior to data import. The Orbit checksheet library has been compiled based on our extensive experience within the field of completions and commissioning management and is fully integrated into the Orbit product.

A full list of supplied checksheets is available on request.

FAT (C) checksheets
Orbit endorses the use of FAT (C) checksheets used solely during factory acceptance testing and transferred into Orbit on site prior to the completions’ phase.

3.4 CHECKSHEET MANAGEMENT
Orbit offers a choice of checksheet management style.

Paper (conventional)
Orbit offers a barcode readable suite of standard MC and PC checksheets for each discipline device as standard, or can import others to make additions, modifications, or revisions on a bespoke basis.

Orbit will print checksheets with embedded barcode information, automatically scanning and storing the document against the correct tag item as a PDF file, demonstrating the wet signature and results.

Reduced paper
This method uses a field-check report (FCR) whereby multiple checksheets can be managed in one report, reducing paper but maintaining the wet signature sign-off traceability. FCRs and associated checksheets can be scanned in the same way as conventional checksheets for batch completion.

Paperless
Utilising the new Orbit application inspection activities can be carried out using our recently developed and innovative process. Orbit will relay all inspection checksheet and punchlist activities directly to the project server.

Paper (conventional)
Orbit offers a choice of checksheet management style.

Paper (conventional)
Orbit offers a barcode readable suite of standard MC and PC checksheets for each discipline device as standard, or can import others to make additions, modifications, or revisions on a bespoke basis.

Orbit will print checksheets with embedded barcode information, automatically scanning and storing the document against the correct tag item as a PDF file, demonstrating the wet signature and results.

Reduced paper
This method uses a field-check report (FCR) whereby multiple checksheets can be managed in one report, reducing paper but maintaining the wet signature sign-off traceability. FCRs and associated checksheets can be scanned in the same way as conventional checksheets for batch completion.

Paperless
Utilising the new Orbit application inspection activities can be carried out using our recently developed and innovative process. Orbit will relay all inspection checksheet and punchlist activities directly to the project server.

Paper (conventional)
Orbit offers a choice of checksheet management style.

Paper (conventional)
Orbit offers a barcode readable suite of standard MC and PC checksheets covering most standard equipment types. These checksheets will be provided in Word format, associated with tag-item types and sub-types and uploaded into the Orbit document library for review and acceptance prior to data import. The Orbit checksheet library has been compiled based on our extensive experience within the field of completions and commissioning management and is fully integrated into the Orbit product.

A full list of supplied checksheets is available on request.

FAT (C) checksheets
Orbit endorses the use of FAT (C) checksheets used solely during factory acceptance testing and transferred into Orbit on site prior to the completions’ phase.

Reduced paper
This method uses a field-check report (FCR) whereby multiple checksheets can be managed in one report, reducing paper but maintaining the wet signature sign-off traceability. FCRs and associated checksheets can be scanned in the same way as conventional checksheets for batch completion.

Paperless
Utilising the new Orbit application inspection activities can be carried out using our recently developed and innovative process. Orbit will relay all inspection checksheet and punchlist activities directly to the project server.

Paperless
Utilising the new Orbit application inspection activities can be carried out using our recently developed and innovative process. Orbit will relay all inspection checksheet and punchlist activities directly to the project server.
ASSURANCE AND VERIFICATION

3.5 CHECKSHEET SCANNING MODULE

Orbit includes a scanning module that allows users to automatically upload and store checksheets within the system without the need for third-party OCR software. The module streamlines the process of scanning and attaching checksheets to their associated tags, making the process extremely quick to undertake.

If Orbit is unable to recognise a checksheet or identify a modified tag, it will alert the user to allow them to correct any inconsistencies and then to re-enter the data. During this process, invalid checksheets are accepted, saving the user from having to re-scan them.

Completed checksheets are stored against the appropriate tag entry for simple and quick retrieval for auditing or reference. In the case of scanned checksheets, the wet-signature copy will automatically replace the blank template checksheet document.

Unlike some systems which only store the checksheet image, when batch scanning Orbit will ask the user to identify the inspector or engineer who completed the checksheet, ensuring full traceability. This is done with an easy-to-use batch interface, making it a fast and simple process for the user.

FCR scanning allows multiple tag completion from one document and traceability through a scanned PDF document attached to each tag enhancing ease of use and the speed in which our completions’ department can process inspection completion.

Remote scanning allows the user to scan checksheets and FCRs and send them back to HQ via the Orbit administrator. Orbit reads the files and automatically associates the barcode with the tags, giving the option to complete, punchlist, and attach to the equipment tag number.

Completed checksheets are stored against the appropriate tag entry for simple and quick retrieval for auditing or reference. In the case of scanned checksheets, the wet-signature copy will automatically replace the blank template checksheet document.

Unlike some systems which only store the checksheet image, when batch scanning Orbit will ask the user to identify the inspector or engineer who completed the checksheet, ensuring full traceability. This is done with an easy-to-use batch interface, making it a fast and simple process for the user.

If Orbit is unable to recognise a checksheet or identify a modified tag, it will alert the user to allow them to correct any inconsistencies and then to re-enter the data. During this process, valid checksheets are accepted, saving the user from having to re-scan them.

Completed checksheets are stored against the appropriate tag entry for simple and quick retrieval for auditing or reference. In the case of scanned checksheets, the wet-signature copy will automatically replace the blank template checksheet document.

Remote scanning allows the user to scan checksheets and FCRs and send them back to HQ via the Orbit administrator. Orbit reads the files and automatically associates the barcode with the tags, giving the option to complete, punchlist, and attach to the equipment tag number.
ASSURANCE AND VERIFICATION

3.6 PUNCHLIST, TECHNICAL, AND SITE QUERIES

Orbit stores records identifying incorrect, damaged, and/or non-conforming equipment using standard punchlist workflow and terminology. Orbit also stores and monitors all project-site and technical queries from inception to close-out.

Outstanding punchlist item statistics are always available on the main menu, to ensure that all users are aware of the current level of unresolved punchlist and query items.

Punchlist and query items are fully auditable, as Orbit stores the details of the user, raising the item along with the operator who entered the item and a date.

Orbit also includes several punchlist and query reports covering summary statistics at any level including project-wide, through to detailed reports covering each punchlist item raised.

Orbit shows all outstanding tasks, allowing the user to be aware of the project status at all times without needing to run a report. The information shown includes the number of outstanding checklists, punchlist items, technical queries, FCRs, and outstanding or imminent preservation activities. Each of these can be filtered by system and sub-system, checklist type, and tag type and sub-type.

3.7 ORBIT CERTIFICATION

At various stages in the project, there will be a requirement to produce formal hard copy handover certification. When this occurs, Orbit will generate certification to signify handover, acceptance, and transfer of ownership and responsibilities of a given work scope. The certification will normally be endorsed by a wet signature from both offering and accepting parties. This will validate the transfer of ownership to the accepting party. The certification will be accompanied by various reports to support and substantiate the handover, such as proof of inspection reports, punchlists, and ‘as built’ drawings. In general, project handover acceptance follows, but is not restricted to the stages below.

Mechanical completion (MC) - MC confirmation that fabrication and build and any associated inspection and testing is complete and correct to the project design specification.

Ready for Commissioning (RFC) - RFC confirmation of equipment function (stand-alone) testing is complete to project design specification.

Ready For Start Up (RFSU) - RFSU confirmation of all related and associated pre-commissioning activities necessary to support either the energisation of a system or the introduction of hydrocarbons are completed and verified to project design specifications.

System handover (SAC) - This is an ownership handover to the asset operators and will usually release the project’s responsibilities. It is issued after the system has been started up and has operated for an agreed period and, in the case of process and production systems, integrity and performance criteria have been established and sustainable steady state operating conditions have been met.

Orbit has the capability to raise a discipline handover certificate for a sub-system when an independent discipline handover is requested by the client. The discipline handover certification can be structured to the client’s requirements.

Certificates can be stored in any format, and Orbit has the intuitively functional to scan and store a wet-signed hardcopy certificate in PDF format as a simple operation without the need for third-party scanning or OCR software. Scanned documents are automatically associated with the certificate reference for instant retrieval.

ASSURANCE AND VERIFICATION

3.6 PUNCHLIST, TECHNICAL, AND SITE QUERIES

Orbit stores records identifying incorrect, damaged, and/or non-conforming equipment using standard punchlist workflow and terminology. Orbit also stores and monitors all project-site and technical queries from inception to close-out.

Outstanding punchlist item statistics are always available on the main menu, to ensure that all users are aware of the current level of unresolved punchlist and query items.

Punchlist and query items are fully auditable, as Orbit stores the details of the user, raising the item along with the operator who entered the item and a date.

Orbit also includes several punchlist and query reports covering summary statistics at any level including project-wide, through to detailed reports covering each punchlist item raised.

Orbit shows all outstanding tasks, allowing the user to be aware of the project status at all times without needing to run a report. The information shown includes the number of outstanding checklists, punchlist items, technical queries, FCRs, and outstanding or imminent preservation activities. Each of these can be filtered by system and sub-system, checklist type, and tag type and sub-type.

3.7 ORBIT CERTIFICATION

At various stages in the project, there will be a requirement to produce formal hard copy handover certification. When this occurs, Orbit will generate certification to signify handover, acceptance, and transfer of ownership and responsibilities of a given work scope. The certification will normally be endorsed by a wet signature from both offering and accepting parties. This will validate the transfer of ownership to the accepting party. The certification will be accompanied by various reports to support and substantiate the handover, such as proof of inspection reports, punchlists, and ‘as built’ drawings. In general, project handover acceptance follows, but is not restricted to the stages below.

Mechanical completion (MC) - MC confirmation that fabrication and build and any associated inspection and testing is complete and correct to the project design specification.

Ready for Commissioning (RFC) - RFC confirmation of equipment function (stand-alone) testing is complete to project design specification.

Ready For Start Up (RFSU) - RFSU confirmation of all related and associated pre-commissioning activities necessary to support either the energisation of a system or the introduction of hydrocarbons are completed and verified to project design specifications.

System handover (SAC) - This is an ownership handover to the asset operators and will usually release the project’s responsibilities. It is issued after the system has been started up and has operated for an agreed period and, in the case of process and production systems, integrity and performance criteria have been established and sustainable steady state operating conditions have been met.

Orbit has the capability to raise a discipline handover certificate for a sub-system when an independent discipline handover is requested by the client. The discipline handover certification can be structured to the client’s requirements.

Certificates can be stored in any format, and Orbit has the intuitively functional to scan and store a wet-signed hardcopy certificate in PDF format as a simple operation without the need for third-party scanning or OCR software. Scanned documents are automatically associated with the certificate reference for instant retrieval.

ASSURANCE AND VERIFICATION

3.6 PUNCHLIST, TECHNICAL, AND SITE QUERIES

Orbit stores records identifying incorrect, damaged, and/or non-conforming equipment using standard punchlist workflow and terminology. Orbit also stores and monitors all project-site and technical queries from inception to close-out.

Outstanding punchlist item statistics are always available on the main menu, to ensure that all users are aware of the current level of unresolved punchlist and query items.

Punchlist and query items are fully auditable, as Orbit stores the details of the user, raising the item along with the operator who entered the item and a date.

Orbit also includes several punchlist and query reports covering summary statistics at any level including project-wide, through to detailed reports covering each punchlist item raised.

Orbit shows all outstanding tasks, allowing the user to be aware of the project status at all times without needing to run a report. The information shown includes the number of outstanding checklists, punchlist items, technical queries, FCRs, and outstanding or imminent preservation activities. Each of these can be filtered by system and sub-system, checklist type, and tag type and sub-type.

3.7 ORBIT CERTIFICATION

At various stages in the project, there will be a requirement to produce formal hard copy handover certification. When this occurs, Orbit will generate certification to signify handover, acceptance, and transfer of ownership and responsibilities of a given work scope. The certification will normally be endorsed by a wet signature from both offering and accepting parties. This will validate the transfer of ownership to the accepting party. The certification will be accompanied by various reports to support and substantiate the handover, such as proof of inspection reports, punchlists, and ‘as built’ drawings. In general, project handover acceptance follows, but is not restricted to the stages below.

Mechanical completion (MC) - MC confirmation that fabrication and build and any associated inspection and testing is complete and correct to the project design specification.

Ready for Commissioning (RFC) - RFC confirmation of equipment function (stand-alone) testing is complete to project design specification.

Ready For Start Up (RFSU) - RFSU confirmation of all related and associated pre-commissioning activities necessary to support either the energisation of a system or the introduction of hydrocarbons are completed and verified to project design specifications.

System handover (SAC) - This is an ownership handover to the asset operators and will usually release the project’s responsibilities. It is issued after the system has been started up and has operated for an agreed period and, in the case of process and production systems, integrity and performance criteria have been established and sustainable steady state operating conditions have been met.

Orbit has the capability to raise a discipline handover certificate for a sub-system when an independent discipline handover is requested by the client. The discipline handover certification can be structured to the client’s requirements.

Certificates can be stored in any format, and Orbit has the intuitively functional to scan and store a wet-signed hardcopy certificate in PDF format as a simple operation without the need for third-party scanning or OCR software. Scanned documents are automatically associated with the certificate reference for instant retrieval.
ASSURANCE AND VERIFICATION

3.8 ORBIT DYNAMIC COMMISSIONING PROCEDURE PREPARATION AND REPORTING
Dynamic procedures (commissioning, start-up, and performance testing) are digitally monitored for status and stage completion (of the procedure) within the database. Each dynamic procedure is digitised into project standard stages and reported for completion in the same manner as that employed for reporting static tag completion.

Procedure execution shows the actual percentage completeness which is recorded during the execution phase, building a planned against actual account of dynamic commissioning. The information provided can be demonstrated in an S-curve, bar chart, or table format.

3.9 ORBIT DOCUMENT REGISTER
All documentation within the Orbit system is stored in a fully referenced and controlled document library accessible from within the software. Any type of document can be stored within the Orbit library, and documents can be explicitly associated with systems and sub-systems, and tags within the database.

Orbit has the built-in functionality to directly scan hard-copy items into the library without the use of third-party scanning software. The Orbit scanning module automatically recognises bar-coded items and will attach those documents to the relevant item within the database.

3.10 ORBIT IMPORTS AND POPULATION
Orbit imports the information contained within a standard engineering database and registers it via a set of defined templates prepared in Excel. Using this method allows Orbit to import information automatically from many different data sources and easily allows personnel to ensure that the data is correct for import.

Accurate and correct data population is essential for Orbit to function as a successful operating tool. To achieve confidence and trust in Orbit, the data has to be ‘real time’ and reflect design (in) and workspace (out) in every detail without leaving any data (tag and associated information) element open to corruption or bad placement. The interface and control of engineering data needs to be controlled from project conception to closeout.

The accuracy and integrity of transferred information is greatly enhanced if industry-standard and well-understood software applications are used to manipulate the data prior to importing.

During the data import process, Orbit will automatically review and cross-check the imported information and identify any errors or missing information on individual records; it will then highlight those records so the user can take corrective action.

The client can specify further run-time verification parameters to be coded into the Orbit product for example, to add processing to ensure that the tag reference conforms to a specific coding scheme.

After importing the data, Orbit uses a two-phase verification process to determine the integrity of the data being imported. Imported information is verified by a discipline engineer within the Orbit software before completions’ activities can commence.

It is quick and easy to manually add project and tag information to Orbit. Our management of change (McC) functionality prevents ad-hoc changes being made to the verified design data after the imported data has been accepted.

ASSURANCE AND VERIFICATION

3.8 ORBIT DYNAMIC COMMISSIONING PROCEDURE PREPARATION AND REPORTING
Dynamic procedures (commissioning, start-up, and performance testing) are digitally monitored for status and stage completion (of the procedure) within the database. Each dynamic procedure is digitised into project standard stages and reported for completion in the same manner as that employed for reporting static tag completion.

Procedure execution shows the actual percentage completeness which is recorded during the execution phase, building a planned against actual account of dynamic commissioning. The information provided can be demonstrated in an S-curve, bar chart, or table format.

3.9 ORBIT DOCUMENT REGISTER
All documentation within the Orbit system is stored in a fully referenced and controlled document library accessible from within the software. Any type of document can be stored within the Orbit library, and documents can be explicitly associated with systems and sub-systems, and tags within the database.

Orbit has the built-in functionality to directly scan hard-copy items into the library without the use of third-party scanning software. The Orbit scanning module automatically recognises bar-coded items and will attach those documents to the relevant item within the database.

3.10 ORBIT IMPORTS AND POPULATION
Orbit imports the information contained within a standard engineering database and registers it via a set of defined templates prepared in Excel. Using this method allows Orbit to import information automatically from many different data sources and easily allows personnel to ensure that the data is correct for import.

Accurate and correct data population is essential for Orbit to function as a successful operating tool. To achieve confidence and trust in Orbit, the data has to be ‘real time’ and reflect design (in) and workspace (out) in every detail without leaving any data (tag and associated information) element open to corruption or bad placement. The interface and control of engineering data needs to be controlled from project conception to closeout.

The accuracy and integrity of transferred information is greatly enhanced if industry-standard and well-understood software applications are used to manipulate the data prior to importing.

During the data import process, Orbit will automatically review and cross-check the imported information and identify any errors or missing information on individual records; it will then highlight those records so the user can take corrective action.

The client can specify further run-time verification parameters to be coded into the Orbit product for example, to add processing to ensure that the tag reference conforms to a specific coding scheme.

After importing the data, Orbit uses a two-phase verification process to determine the integrity of the data being imported. Imported information is verified by a discipline engineer within the Orbit software before completions’ activities can commence.

It is quick and easy to manually add project and tag information to Orbit. Our management of change (McC) functionality prevents ad-hoc changes being made to the verified design data after the imported data has been accepted.
ASSURANCE AND VERIFICATION

3.11 ORBIT MoC

Orbit’s in-built MoC system can be activated and enforced by the Orbit administrator upon the commencement of mechanical completion. Following CMS population, all queries and the resulting changes to data will be driven through and reflected in the change request documentation and recorded within Orbit.

Change requests must be raised, authorised, and then actioned following a strict workflow to prevent corruption of the tag data. Orbit will not allow a user to modify an item that is not part of a change request, preventing user error whilst updating data.

Activities which are subject to the MoC procedure include adding, deleting, and updating tag, and system and sub-system information. It is not possible to alter information within the Orbit system without following the MoC procedure and workflow once it has been enabled.

3.12 REPORTING

Orbit uses the industry-standard Microsoft SQL Server 2008 relational database platform. This allows users to create complex reports and quickly retrieve results from the database in a variety of formats. Reports can be exported in PDF or Excel for further independent analysis and for ease of internal publishing.

Planning and S-curve charts are also included, which are plotted using actual checklist and certification completion status and can be run across any level of the project from the top-level tier to individual sub-systems, and across multiple projects as required. Orbit uses the checklist ‘norms’: hours which can be assigned to any checklist to build an accurate picture of totals (A & B checklists) versus real-time completion requirements. Scheduled reporting is available to all Orbit licence holders. Any report from the report generator can be scheduled to run and deliver for email delivery to any predefined address.

Scheduled reporting is available to all Orbit licence holders. Any report from the report generator can be scheduled to run and deliver for email delivery to any predefined address.

ASSURANCE AND VERIFICATION

3.11 ORBIT MoC

Orbit’s in-built MoC system can be activated and enforced by the Orbit administrator upon the commencement of mechanical completion. Following CMS population, all queries and the resulting changes to data will be driven through and reflected in the change request documentation and recorded within Orbit.

Change requests must be raised, authorised, and then actioned following a strict workflow to prevent corruption of the tag data. Orbit will not allow a user to modify an item that is not part of a change request, preventing user error whilst updating data.

Activities which are subject to the MoC procedure include adding, deleting, and updating tag, and system and sub-system information. It is not possible to alter information within the Orbit system without following the MoC procedure and workflow once it has been enabled.

3.12 REPORTING

Orbit uses the industry-standard Microsoft SQL Server 2008 relational database platform. This allows users to create complex reports and quickly retrieve results from the database in a variety of formats. Reports can be exported in PDF or Excel for further independent analysis and for ease of internal publishing.

Planning and S-curve charts are also included, which are plotted using actual checklist and certification completion status and can be run across any level of the project from the top-level tier to individual sub-systems, and across multiple projects as required. Orbit uses the checklist ‘norms’: hours which can be assigned to any checklist to build an accurate picture of totals (A & B checklists) versus real-time completion requirements. Scheduled reporting is available to all Orbit licence holders. Any report from the report generator can be scheduled to run and deliver for email delivery to any predefined address.

Scheduled reporting is available to all Orbit licence holders. Any report from the report generator can be scheduled to run and deliver for email delivery to any predefined address.
The Orbit digital dashboard allows project personnel (shop-floor to project management) to monitor the contribution of various groups of the project. To gauge exactly how well the project is performing overall, the digital dashboards can be specified by the client to report specific data and provide a snapshot of performance and progress.

Items on the dashboard can be represented either as graphs, lists of information, or ‘gauges’, giving an intuitive representation of the data.

The dashboard is available in both the Windows application and the web-based version of Orbit, allowing access to headline key performance indicators and performance data from any location via the Internet.
3 ASSURANCE AND VERIFICATION

3.14 PRESERVATION
Orbit includes a dedicated preservation module. Any tag item with the database can be associated with preservation activities, and Orbit will provide a list of outstanding or up-coming activities in one central location. Once completed, actions are stored in the database with the details of the personnel who carried them out, the operator logging the activity, and the relevant times at which they were completed. Orbit will then automatically schedule dates for the next activity for the tag if necessary.

This feature provides a fully traceable history, from initial preservation accountability (delivery to warehouse) through to equipment handover, to operations on completion of commissioning and start-up.

Preservation information can be exported from the Orbit database for import into a third-party asset management system once commissioning activities have been completed.

3.15 ENGINEERING DATA
Engineering data applications, such as logistics, materials, and maintenance routines, can be recorded against individual tags. In addition, tags can be associated with supplier and manufacturer records, which are stored separately within Orbit. Using this functionality, it becomes a simple process to review all tag items which have originated from one or more manufacturers or suppliers across the entire project.

3.16 HAZARDOUS AREA EQUIPMENT
Orbit identifies the tag and area relationship during data import and during the course of mechanical completion and commissioning activities ensures that the equipment is registered, inspected, and certified [ATEX Directive – Electrical and Non-Electrical Equipment, Protective Systems, Components, and Safety Devices]. The hazardous area equipment list can be exported into Microsoft Excel or reported on throughout the project lifecycle.

3.17 SECURITY
Orbit has a robust multi-role security system. Users can be assigned permissions for over 100 separate activities to ensure that security is maintained across the system. In addition, users can be assigned specific roles using the security group feature, which automatically sets their permissions to a pre-specified security template. Individual permissions can be assigned to users in combination with the security group, creating an entirely flexible, but robust permissions system.

Examples of standard user security groups and roles within Orbit are:
- System administrator - has full access.
- Data entry - can input and update information (controlled by the MoC system).
- Read only - can review information but not interact with it.
- Reporting only - has the ability to run reports but not to access any other modules.
- Dashboard only - only has access to the Orbit dashboard.

Security groups will be configured in line with the client’s requirements during the deployment phase.

3 ASSURANCE AND VERIFICATION

3.14 PRESERVATION
Orbit includes a dedicated preservation module. Any tag item with the database can be associated with preservation activities, and Orbit will provide a list of outstanding or up-coming activities in one central location. Once completed, actions are stored in the database with the details of the personnel who carried them out, the operator logging the activity, and the relevant times at which they were completed. Orbit will then automatically schedule dates for the next activity for the tag if necessary.

This feature provides a fully traceable history, from initial preservation accountability (delivery to warehouse) through to equipment handover, to operations on completion of commissioning and start-up.

Preservation information can be exported from the Orbit database for import into a third-party asset management system once commissioning activities have been completed.

3.15 ENGINEERING DATA
Engineering data applications, such as logistics, materials, and maintenance routines, can be recorded against individual tags. In addition, tags can be associated with supplier and manufacturer records, which are stored separately within Orbit. Using this functionality, it becomes a simple process to review all tag items which have originated from one or more manufacturers or suppliers across the entire project.

3.16 HAZARDOUS AREA EQUIPMENT
Orbit identifies the tag and area relationship during data import and during the course of mechanical completion and commissioning activities ensures that the equipment is registered, inspected, and certified [ATEX Directive – Electrical and Non-Electrical Equipment, Protective Systems, Components, and Safety Devices]. The hazardous area equipment list can be exported into Microsoft Excel or reported on throughout the project lifecycle.

3.17 SECURITY
Orbit has a robust multi-role security system. Users can be assigned permissions for over 100 separate activities to ensure that security is maintained across the system. In addition, users can be assigned specific roles using the security group feature, which automatically sets their permissions to a pre-specified security template. Individual permissions can be assigned to users in combination with the security group, creating an entirely flexible, but robust permissions system.

Examples of standard user security groups and roles within Orbit are:
- System administrator - has full access.
- Data entry - can input and update information (controlled by the MoC system).
- Read only - can review information but not interact with it.
- Reporting only - has the ability to run reports but not to access any other modules.
- Dashboard only - only has access to the Orbit dashboard.

Security groups will be configured in line with the client’s requirements during the deployment phase.

3 ASSURANCE AND VERIFICATION

3.14 PRESERVATION
Orbit includes a dedicated preservation module. Any tag item with the database can be associated with preservation activities, and Orbit will provide a list of outstanding or up-coming activities in one central location. Once completed, actions are stored in the database with the details of the personnel who carried them out, the operator logging the activity, and the relevant times at which they were completed. Orbit will then automatically schedule dates for the next activity for the tag if necessary.

This feature provides a fully traceable history, from initial preservation accountability (delivery to warehouse) through to equipment handover, to operations on completion of commissioning and start-up.

Preservation information can be exported from the Orbit database for import into a third-party asset management system once commissioning activities have been completed.

3.15 ENGINEERING DATA
Engineering data applications, such as logistics, materials, and maintenance routines, can be recorded against individual tags. In addition, tags can be associated with supplier and manufacturer records, which are stored separately within Orbit. Using this functionality, it becomes a simple process to review all tag items which have originated from one or more manufacturers or suppliers across the entire project.

3.16 HAZARDOUS AREA EQUIPMENT
Orbit identifies the tag and area relationship during data import and during the course of mechanical completion and commissioning activities ensures that the equipment is registered, inspected, and certified [ATEX Directive – Electrical and Non-Electrical Equipment, Protective Systems, Components, and Safety Devices]. The hazardous area equipment list can be exported into Microsoft Excel or reported on throughout the project lifecycle.

3.17 SECURITY
Orbit has a robust multi-role security system. Users can be assigned permissions for over 100 separate activities to ensure that security is maintained across the system. In addition, users can be assigned specific roles using the security group feature, which automatically sets their permissions to a pre-specified security template. Individual permissions can be assigned to users in combination with the security group, creating an entirely flexible, but robust permissions system.

Examples of standard user security groups and roles within Orbit are:
- System administrator - has full access.
- Data entry - can input and update information (controlled by the MoC system).
- Read only - can review information but not interact with it.
- Reporting only - has the ability to run reports but not to access any other modules.
- Dashboard only - only has access to the Orbit dashboard.

Security groups will be configured in line with the client’s requirements during the deployment phase.
INTERFACING AND DATA IMPORT/EXPORT

Orbit can interact with many standard engineering and planning systems. The primary interface with these systems is provided by Excel exporting and importing, allowing us to easily and flexibly support a large number of systems with no additional development. Users can export information from any of the data grids within Orbit directly to Excel with a single click, or alternatively print that information either to hard copy or export it to PDF for email and distribution.

For more sophisticated integration, functionality can be developed within Orbit for a tight interface with the client’s existing software packages, such as SAP. As each of the deployments and configurations of these systems vary from client to client, we undertake these as additional development items with agreed functionality and are charged at standard rates. For integrations with some systems, we use external companies who are experts in interfacing and with whom we have worked before to ensure we provide a fit-for-purpose interface mechanism with the shortest lead time.

JOB CARDS

O-Job Card - Job Card functionality interfaces directly into the CMS by area, system, sub-system and tag giving undeviating and precise control to all departments. Orbit produces itemized and detailed job cards including man-hour, resource and support content for every aspect of work profile during all phases of the project.

RISK

O-Integrity - Raising risks directly associated with a project tag, equipment, system or sub system brings control and management for a greater chance of risk mitigation. Recording these risks then applying monitored mitigating actions with the direct help of Orbit will ensure plant start-up is not affected by last minute flaws.

INTERFACING AND DATA IMPORT/EXPORT

Orbit can interface with many standard engineering and planning systems. The primary interface with these systems is provided by Excel exporting and importing, allowing us to easily and flexibly support a large number of systems with no additional development. Users can export information from any of the data grids within Orbit directly to Excel with a single click, or alternatively print that information either to hard copy or export it to PDF for email and distribution.

For more sophisticated integration, functionality can be developed within Orbit for a tight interface with the client’s existing software packages, such as SAP. As each of the deployments and configurations of these systems vary from client to client, we undertake these as additional development items with agreed functionality and are charged at standard rates. For integrations with some systems, we use external companies who are experts in interfacing and with whom we have worked before to ensure we provide a fit-for-purpose interface mechanism with the shortest lead time.

JOB CARDS

O-Job Card - Job Card functionality interfaces directly into the CMS by area, system, sub-system and tag giving undeviating and precise control to all departments. Orbit produces itemized and detailed job cards including man-hour, resource and support content for every aspect of work profile during all phases of the project.

RISK

O-Integrity - Raising risks directly associated with a project tag, equipment, system or sub system brings control and management for a greater chance of risk mitigation. Recording these risks then applying monitored mitigating actions with the direct help of Orbit will ensure plant start-up is not affected by last minute flaws.
The Orbit system is available as a standard Windows, Web-based and iOS application. Using these three methods of accessing the Orbit database allows for flexible deployment across multiple sites.

Orbit Windows application

The full Orbit application is a native Windows application that is installed and runs on a user’s workstation. The version is fully featured and includes other functionality such as our built-in scanning module. Data import must be undertaken using the full Windows version.

Orbit web-based application

The Orbit web-based version allows users to access and review information within the Orbit database from any location (subject to internet access), using a web browser. With over 95% of the standard desktop capability, the Orbit web companion can be used remotely for all database activities. Live Orbit dashboard updates, and tag database management, including outstanding items such as A and B checksheets, and punchlist and technical query administration, can be managed online. Completions certification handover and acceptance is also achievable whilst on the move. Using the Orbit web version also removes users’ dependence on Windows platforms.

Data import must be undertaken using the full Windows version.

Orbit web-based application

The Orbit web-based version allows users to access and review information within the Orbit database from any location (subject to internet access), using a web browser. With over 95% of the standard desktop capability, the Orbit web companion can be used remotely for all database activities. Live Orbit dashboard updates, and tag database management, including outstanding items such as A and B checksheets, and punchlist and technical query administration, can be managed online. Completions certification handover and acceptance is also achievable whilst on the move. Using the Orbit web version also removes users’ dependence on Windows platforms.
Fully optimized for touch screen, the iOS version is an all-new way to benefit paperless Completions Management inspection. iOrbit gives you remote access from anywhere at any time. The user interface is built around the device’s multi-touch screen and gives you access to the project hierarchy including Systems, Sub Systems and Tags. Further functionality allows the user to complete checksheets, take photos for raised punchlists and view essential project KPI’s.
Orbit has been designed from the first instance to be intuitive and powerful, and we have found that personnel become familiar with the system in a short time. When deploying an Orbit system, we include at least one training database system free of charge. Users can access the training system before the live deployment and at any time during the license period for refresher training, or to check their data before conducting operations on the live system. We have found the side-by-side training system deployment to be highly beneficial. No additional hardware or software is required to access the training system.

Training is delivered in a structured classroom environment, with optimal class sizes to suit course curriculum. The standard course duration for technical/engineering users is one day, with shorter half-day courses for read-only users, and a five-day course for system administrators.

We assess the competency of staff requiring training and tailor the training programme to suit their needs. Examples of topics covered within the training courses, by role, are:

- **System administrator** – two-day course: ‘super user’ administrator access with full rights and functionality to all Orbit modules.
- **Read/write** – one-day course: users with access to pre-nominated modules and sets of data who update and/or input on a regular basis, for example, checklist and punchlist management.
- **Read-only** – half-day course: fixed pre-set selection of modules giving access to project information and data through a choice of screen-based, tabulated, dashboard, and graphical reporting.
- **Training** – full documentation is provided during training sessions and sample schedules are available on request.

Full documentation is provided during training sessions and sample schedules are available on request.

Training can be delivered at the client’s premises, at our premises, or at a nominated location. A classroom-style setup with several available workstations is preferred, but not essential.

TRAINING

5

TRAINING

5 1

Orbit has been designed from the first instance to be intuitive and powerful, and we have found that personnel become familiar with the system in a short time. When deploying an Orbit system, we include at least one training database system free of charge. Users can access the training system before the live deployment and at any time during the license period for refresher training, or to check their data before conducting operations on the live system. We have found the side-by-side training system deployment to be highly beneficial. No additional hardware or software is required to access the training system.

Training is delivered in a structured classroom environment, with optimal class sizes to suit course curriculum. The standard course duration for technical/engineering users is one day, with shorter half-day courses for read-only users, and a five-day course for system administrators.

We assess the competency of staff requiring training and tailor the training programme to suit their needs. Examples of topics covered within the training courses, by role, are:

- **System administrator** – two-day course: ‘super user’ administrator access with full rights and functionality to all Orbit modules.
- **Read/write** – one-day course: users with access to pre-nominated modules and sets of data who update and/or input on a regular basis, for example, checklist and punchlist management.
- **Read-only** – half-day course: fixed pre-set selection of modules giving access to project information and data through a choice of screen-based, tabulated, dashboard, and graphical reporting.
- **Training** – full documentation is provided during training sessions and sample schedules are available on request.

Full documentation is provided during training sessions and sample schedules are available on request.

Training can be delivered at the client’s premises, at our premises, or at a nominated location. A classroom-style setup with several available workstations is preferred, but not essential.
5.2 ‘TRAIN THE TRAINER’

We also offer ‘train the trainer’ course. This course allows clients to be fully trained on all aspects of the Orbit system and provides them with course material to conduct internal training. This approach is particularly popular with clients who have technical staff in various locations or for clients who wish to ensure that their own internal workflow is followed by users.
The Orbit system is backed-up by 24/7 support personnel who are based in our Newcastle-upon-Tyne and Aberdeen offices. Support is conducted by phone or email, and support activities require remote desktop access to the Orbit database servers via VPN or other remote access mechanisms. Ideally, remote access to a user’s desktop is preferred, as we have found that this is an invaluable tool for both training and troubleshooting.

If our personnel are supplied to the client to manage the system and to provide data input, they will provide on-site first-line support and liaise with in-house support and development teams on the client’s behalf. If no personnel are deployed, first-line support is conducted by phone and email and can be internally escalated to our developers and project management team.

We develop and maintain Orbit on a continuous basis, and there is no charge for standard functional upgrades throughout the project licence period. Updates are optional and will be deployed after consultation with the client.

We have an in-house team of developers who can customise Orbit to the requirements of the client or even the project. Additional features and functionality can be designed and created at the client’s request.

The Orbit system is backed-up by 24/7 support personnel who are based in our Newcastle-upon-Tyne and Aberdeen offices. Support is conducted by phone or email, and support activities require remote desktop access to the Orbit database servers via VPN or other remote access mechanisms. Ideally, remote access to a user’s desktop is preferred, as we have found that this is an invaluable tool for both training and troubleshooting.

If our personnel are supplied to the client to manage the system and to provide data input, they will provide on-site first-line support and liaise with in-house support and development teams on the client’s behalf. If no personnel are deployed, first-line support is conducted by phone and email and can be internally escalated to our developers and project management team.

We develop and maintain Orbit on a continuous basis, and there is no charge for standard functional upgrades throughout the project licence period. Updates are optional and will be deployed after consultation with the client.

We have an in-house team of developers who can customise Orbit to the requirements of the client or even the project. Additional features and functionality can be designed and created at the client’s request.
PROVISION OF TRAINED PERSONNEL

OCCMS can provide fully trained personnel for system management and data input roles. OCCMS retain a team of experienced Orbit system engineers, commissioning and completions engineers and data entry staff that can be seconded to the client’s premises to manage and populate the Orbit system as required.